Synopsis
Since one of the potential applications of titanium oxide nano-tubes (TNT) is to photodynamic therapy (PDT), the effects of reactive oxygen species (ROS) generated by TNT irradiated with ultraviolet (UV) rays were evaluated in HeLa cells.
The microstructures of cells incubated in TNT-containing medium were observed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), and the adherence of TNT to these cells was confirmed. An oxidative stress fluorescence probe was then used to visualize oxidative stress in HeLa cells, and revealed that the ROS generated by TNT led to oxidative stress in HeLa cells. A flow cytometric analysis was performed to characterize the cell status and distinguish between viable and unviable cells. Polyethylene glycol (PEG) modifications to the surfaces of TNT effectively facilitated adherence to cells, and the UV irradiation of HeLa cells during their incubation in culture medium containing PEG-modified TNT induced oxidative stress, thereby suppressing DNA repair.
Key words: photodynamic therapy (PDT); Titania nanotube (TNT); reactive oxygen species (ROS)